对外提升营销效果:构建用户标签画像以实现分层精准运营,有效提升营销运营的效果,增加粘性创造增长,例如会员权益、复购分析、成长路径分析等细分场景。
由于数据可承载的应用场景十分庞大(参考下图),为此企业无论是在搭建CDP等平台还是做有关数据层面的建设时,一定要明确业务增长目标和用户需求场景,避免出现CDP是归IT负责还是业务负责等非此即彼的问题,即需要不同的部门用统一的视角看待业务和用户,才能把事情做好。
这也就要求着企业在构建One-ID体系下,根据业务增长目标和用户运营场景,进行包括前后链路数据,业务系统与运营系统数据的数据指标体系规划。创略科技认为,数据指标体系是实现数据驱动决策的“指南针”。
业务过程:业务目标是最终企业希望达到的效果,为实现这一目标则会有一系列的业务流程与策略。以提升GMV为例,用户的常见购买流程多以浏览-注册-下单-支付-复购-裂变,为提升GMV企业则需要关注用户数、转化率以及客单价,为此需要梳理用户全渠道生命旅程,基于消费者核心运营链路(消费生命周期、会员运营周期、互动生命周期、产品消费周期等)展开策略设计。
业务要素:支撑业务过程的则为关键业务要素,如以会员运营周期为例,其业务要素即为未入会率、等级和贡献度变化、付费和VIP会员、会员激活率等。
数据指标拥有多维度的特性,需要以多视角来看。举个例子,以官网点击率作为数据指标,但其还能延伸出工作人员官网点击率、某落地页跳转官网点击率、某个时段官网点击率等等维度。而这个多维度则由业务数据所决定的,为此数据指标需要业务与技术的双向协同。即以数据发生、业务运营为核心视角,将数据关键节点设计出来,满足后续的数据存储和归类需求,方便数据应用快速定位和业务技术统一使用口径。
- 1.和业务目标紧密结合
- 2.反映客户真实价值需求
- 3.指标简单易懂
- 4.能够计算汇总
数据应用体系缺失:数据指标体系只是数据应用的一环,其中还包括标签体系构建、分层分群策略、数据模型应用等多个环节,所以企业仍同步完善基于标签体系的消费者运营体系、私域裂变链路等维度,确保可以环环相扣。
当然,不同业务要素、不同业务流程、不同业务目标下的前置条件并不相同,更需要因地制宜的筛检自查,在最大程度实现业务目标的同时,推动业务、技术改造,并完善业务流程与运营体系,以点到面驱动各个维度的转型升级。
数据分析师整理需求调研内容,编制《需求调研报告》
3.需求范围确认
项目业务人员针对《需求调研报告》的内容和评估意见,确定指标体系需求范围
4.指标体系方案规划
数据分析师就已确认需求,开展指标划设计工作,反馈相关业务体系指标规划方案
5.指标体系方案确认
数据分析师就指标体系方案,对项目业务人员进行内容串讲,项目业务人员确定方案内容
6.数据采集补充
数据分析师就指标体系规划方案,确定是否需要数据采集,若需要则选择埋点方式为埋点事件选择代码埋点、无埋点、服务端接入、活动采集等方式
7.数据验证及效果评估
数据分析师根据指标体系方案,搭建对应的可视化看板,项目业务人员基于可视化数据,对数据指标体系进行效果评估并优化

本站文章收集整理于网络,原文出处: ,本站仅提供信息存储空间服务。如若转载,请注明出处。